מטרות הניסוי: רקע תאורטי: מורה יקר! שים לב, כל התשובות הנכונות מסומנות באדום!

Σχετικά έγγραφα
מטרות הניסוי: רקע תאורטי: 1. חקירת התלות של עוצמת השדה המגנטי, שנוצר במרכז לולאה מעגלית נושאת זרם בשני פרמטרים: א.

מה נשמר קבוע? מה מחשבים?

שאלה 1 V AB פתרון AB 30 R3 20 R

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

חלק: א' הדו"ח מוגש על ידי: פומרנץ ישי קישון איתי ת.ז. שם משפחה שם פרטי ת.ז. שם משפחה שם פרטי 1 X 02 סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה:

גבול ורציפות של פונקציה סקלרית שאלות נוספות

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

שאלה 3. b a I(A) α(deg) 10 cm

PDF created with pdffactory trial version

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

גלים א. חיבור שני גלים ב. חיבור N גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים

בכל החלקים לפני חיבור המעגל יש לקבל אישור מהמדריך. מעגלים חשמליים- תדריך עבודה

מורה יקר! שים לב, התשובות הנכונות מסומנות באדום!

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

חורף תש''ע פתרון בחינה סופית מועד א'

פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות)

דינמיקה כוחות. N = kg m s 2 מתאפסת.

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

תרגיל 13 משפטי רול ולגראנז הערות

אוסף שאלות מס. 3 פתרונות

מחוון פתרון לתרגילי חזרה באלקטרומגנטיות קיץ תשס"ז. V=ε R

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

חשמל ומגנטיות תשע"ה תרגול 9 שדה מגנטי ומומנט דיפול מגנטי

3-9 - a < x < a, a < x < a

פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

תרגיל 7 פונקציות טריגונומטריות הערות

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

תרגול פעולות מומצאות 3

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

gcd 24,15 = 3 3 =

ל הזכויות שמורות לדפנה וסטרייך

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

תרשים 1 מבוא. I r B =

הרצאה 7 טרנזיסטור ביפולרי BJT

-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.

שאלה 13 הזרם. נקודות) /V (1/Volt)

B d s. (displacement current) זרם תזוזה או העתקה, האם חוק אמפר שגוי לגבי מצב זה?

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

תרגול מס' 6 פתרון מערכת משוואות ליניארית

קיום ויחידות פתרונות למשוואות דיפרנציאליות

(ספר לימוד שאלון )

הקימנידורטקלאה תודוסי (ךשמה)

מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.

חוק פאראדיי השתנות השטף המגנטי בזמן,גורמת להשראת מתח חשמלי במוליך (המתח הזה הינו כוח אלקטרו מניע או כא מ).

דף תרגילים תנועת מטען בשדה מגנטיות

אוניברסיטת תל אביב הפקולטה להנדסה ע"ש איבי ואלדר פליישמן

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

Vcc. Bead uF 0.1uF 0.1uF

:ןורטיונ וא ןוטורפ תסמ

שטף בהקשר של שדה וקטורי הוא "כמות" השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך:

התשובות בסוף! שאלה 1:

שדות מגנטיים של זרמים שדה מגנטי של מטען נע שדה חשמלי של מטען נקודתי

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי

מתמטיקה בדידה תרגול מס' 5

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.

T 1. T 3 x T 3 בזווית, N ( ) ( ) ( ) התלוי. N mg שמאלה (כיוון

-הולכה חשמלית- הולכה חשמלית

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

גמישויות. x p Δ p x נקודתית. 1,1

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25.

את כיוון המהירות. A, B

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

תשס"ז שאלות מהחוברת: שאלה 1: 3 ס"מ פתרון: = = F r 03.0 שאלה 2: R פתרון: F 2 = 1 10

המטרה התיאוריה קיטוב תמונה 1: גל א מ

דיאגמת פאזת ברזל פחמן

סיכום- בעיות מינימוםמקסימום - שאלון 806

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

שדות מגנטיים תופעות מגנטיות

Data Studio. AC1_Circuit_R.ds כרך : חשמל

יתרואת עקר יאטל - וו וטופ את

חשמל לתלמידי 5 יחידות לימוד הוראות לנבחן = נקודות

גיאומטריה גיאומטריה מעגלים ניב רווח פסיכומטרי

תרגיל 3 שטף חשמלי ומשפט גאוס

תרגול #10 מרכז מסה, מומנט התמד ומומנט כח

חוק קולומב והשדה החשמלי

A X. Coulomb. nc = q e = x C

אלגברה מודרנית פתרון שיעורי בית 6

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS

תרגול 6 חיכוך ותנועה מעגלית

סדרות - תרגילים הכנה לבגרות 5 יח"ל

מתמטיקה בדידה תרגול מס' 2

חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית

גליון 1 גליון 2 = = ( x) ( x)

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 23/5/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן ( )

פיזיקה 2 שדה מגנטי- 1

Transcript:

מורה יקר! שים לב, כל התשובות הנכונות מסומנות באדום! מטרות הניסוי: 1. חקירת התלות של עוצמת השדה המגנטי, שנוצר במרכז לולאה מעגלית נושאת זרם בשני פרמטרים: א. ב. עוצמת הזרם הזורם בלולאה, כאשר מספר הכריכות קבוע. מספר הכריכות של הלולאה, כאשר עוצמת הזרם קבועה. 2. מציאת גודל הרכיב האופקי של השדה המגנטי הארצי. רקע תאורטי: לכדור הארץ שדה מגנטי, בו הקוטב המגנטי הדרומי נמצא בסמוך לקוטב הגיאוגרפי הצפוני, ולהפך. בקו המשווה, כיוונו של וקטור השדה המגנטי הארצי מקביל לפני כדור הארץ, אך ברוב המקומות על פני כדה"א, וקטור השדה המגנטי הארצי איננו אופקי. לדוגמא, רכיבי השדה המגנטי הארצי באזור תל- אביב הם: הרכיב האופקי: )נסמן אותו ב BE ( הרכיב האנכי:

כאשר נניח מחט מגנטית )מגנט קטן( במקום כלשהו על פני כדור הארץ, המחט תתייצב לאורך הרכיב האופקי של השדה המגנטי שקיים במקום זה. כיוון המחט יהיה בקירוב מקביל לקו האורך )הקו צפון-דרום(, חוץ מאשר בקרבת הקטבים. בניסוי זה נתייחס רק לרכיב האופקי של השדה המגנטי הארצי. בניסוי נשתמש בעובדה, שאם במקום מסוים קיים שדה מגנטי אופקי נוסף, הרי שמחט המצפן תראה את הכיוון של השדה האופקי השקול. כידוע, במרכזה של כריכה מעגלית דקה, שדרכה זורם זרם, נוצר שדה מגנטי הניצב למישור הכריכה. נסמן שדה זה גודל השדה המגנטי שיוצר הזרם הוא. כאשר: μ0 הוא קבוע הפרמאביליות של הריק וערכו = N מספר הכריכות ן = עוצמת הזרם R = רדיוס הכריכה כיוונו של השדה נקבע על פי כלל יד ימין.

אם נציב מצפן במרכזה של כריכה מעגלית דקה, דרכה זורם זרם, כך שמישור הכריכה יוצב בכיוון צפון-דרום, הרי שעל מחט המצפן יפעלו: הרכיב האופקי של השדה המגנטי הארצי BE בכיוון צפון-דרום. השדה המגנטי שיוצר הזרם בכריכה המעגלית, Bi בכיוון ניצב לצפון-דרום. מחט המצפן )המוגבלת לתנועה אופקית בלבד( תתייצב ב"כיוון ביניים" כלשהו בין כיווני השדות, בהתאם לכיוון השדה מגנטי השקול. נסמן שדה שקול זה כ- βt היוצר זווית α עם כיוון הצפון. מתוך האיור ניתן לראות כי את זווית הסטייה α של מחט המצפן ניתן למצוא באמצעות הקשר: בסדרת הניסויים שנבצע, נמדוד את זווית הסטייה של מחט המצפן ביחס לכיוון צפון, כאשר הזרם קבוע ומספר הכריכות משתנה, או לחילופין- כאשר מספר הכריכות N הוא קבוע והזרם משתנה. באמצעות מדידות אלו נוכל למצוא את גודל הרכיב האופקי של השדה המגנטי הארצי.BE

שאלה 1 האם הקוטב הצפוני הגיאוגרפי מתלכד עם הקוטב הצפוני המגנטי? הסבירו )תוכלו לקרוא על כך במקורות שונים באינטרנט(. הקוטב הצפוני הגיאוגרפי והמגנטי לא מתלכדים, ליד הקוטב הצפוני הגיאוגרפי נמצא הקוטב הדרומי המגנטי של כדור הארץ. במהלך הניסוי, תבנו את המעגל החשמלי המתואר באיור: שאלה 2 כיצד לדעתכם ישפיע גודלו של המגנט על דיוק המדידה בניסוי? האם הדבר מגדיל או מקטין את שגיאת המדידה? הסבירו. רמז: האם המצפן מושפע רק מהשדה המגנטי שקיים במרכז הכריכה או שהוא מושפע גם מהשדה המגנטי הנמצא במקום אחר? מחט המצפן מושפעות גם מהשדה המגנטי שנמצא בסביבתכם, בנוסף לשדה המגנטי שבנוסחה. למעשה אנו מודדים שדה ממוצע, שקיים לאורך הקוטר של המצפן. ככל שנגדיל את המצפן, תגדל שגיאת המדידה שלנו.

שאלה 3 נניח שסטיית מחט המצפן באחד משלבי הניסוי הייתה מתקבלת 45. במצב זה, גודל השדה המגנטי שיוצרות כריכות הזרם גדול מ.../קטן מ.../ שווה ל... גודל הרכיב האופקי של השדה המגנטי הארצי. שאלה 4 נניח שתלמיד מציב את מישור הכריכות של הגלוונומטר במקביל לכיוון מזרח מערב )במקום צפון-דרום(, כלומר- המערכת מסובבת ב- 90 ביחס למיקום המקורי. הסבירו: כיצד ישפיע מצב זה על סטיית מחט המצפן? כיצד ישפיע החלפת כיוון הזרם בכריכות על סטיית מחט המצפן? במקרה זה, כיוון השדה המגנטי של גלוונומטר יכול להתלכד עם כיוון השדה המגנטי הארצי או להיות מנוגד לו, תלוי בכיוון הזרם שזורם בגלוונומטר. אם כיוון השדה המגנטי של הגלוונומטר מתלכד עם כיוון השדה המגנטי הארצי, מחט המצפן לא תסטה עם הגדלת הזרם, אלא תראה תמיד לכיוון הצפון. אם כיוון השדה המגנטי של הגלוונומטר יהיה בכיוון מנוגד לכיוון השדה המגנטי הארצי, אז הגדלת הזרם תגרום בשלב מסוים להיפוך מחט המצפן לכיוון דרום, זה יקרה כאשר גודלו של השדה המגנטי של הגלוונומטר יהיה גדול מערכו של השדה המגנטי הארצי.

שאלה 5 תלמיד חיבר את המעגל המתואר, וקיבל קריאת זרם שלילית, כמוראה בצילום. הסבירו: מה משמעות הסימן השלילי במד הזרם? רמז: מה היה קורה אילו התלמיד היה מחליף בין החוט האדום לחוט השחור בחיבורים אל מכשיר האמפרמטר? מקובל לקבוע את כיוון הזרם מהפוטנציאל הגבוה לנמוך. לכן כיוון הזרם במעגל הוא מההדק החיובי של מקור המתח. נקודת הייחוס של מכשיר המדידה היא כניסת ה -.COM עבור מד הזרם, כיוון חיובי מוגדר כאשר הזרם במעגל עובר מכניסת ה - COM אל יציאת האמפרים, וזרם שלילי מוגדר כזרם העובר מכניסת האמפרים אל יציאת ה.COM- כפי שרואים בצילום, הזרם במעגל הוא מהחוט האדום אל החוט השחור. כלומר כיוון הזרם הוא מכניסת האמפרים ליציאת ה - COM לכן מד הזרם מראה סימן שלילי. שאלה 6 נניח כי במהלך הניסוי סטתה מחט המצפן, מכיוון צפון אל עבר כיוון מערב. כמתואר בצילום. הסיבה לסטיה של מחט המצפן היא השפעת השדה המגנטי שנוצר כתוצאה מסגירת המעגל החשמלי. מהו כיוון השדה המגנטי שיוצרות כריכות הזרם בצילום המתואר? תארו בעזרת כלל יד ימין, כיצד ניתן למצוא את כיוון הזרם בכריכות.

את כיוון השדה המגנטי נמצא עפ"י כלל יד ימין: )אפשרות 1(: אגודל בכיוון הזרם, ואצבעות היד מתלפפות סביב התיל. כיוון האצבעות במרכז הכריכה יראו על כיוון השדה המגנטי. )אפשרות 2(: אצבעות היד מתלפפות סביב הכריכה המעגלית בכיוון הזרם, האגודל מצביע על כיוון השדה המגנטי. שאלה 7 התבוננו בצילום שלפניכם. מהו כיוון הזרם בכריכות? )סמנו את האפשרות הנכונה(. מ- 0 ל- a )מדרום לכיוון צפון( מ- 0 ל- b )מצפון לכיוון דרום( ממערב לכיוון דרום. מדרום לכיוון מערב. אי אפשר לדעת שאלה 8 נניח שהיינו מלפפים כריכה אחת או שתים במגמה הפוכה ליתר הכריכות בגלוונומטר. האם הדבר היה משפיע על מהלך הניסוי? תארו כיצד. ליפוף של חלק מכריכות בכיוון הפוך יגרום לזרימה הפוכה של זרם בחלק מהכריכות. דבר זה יגרום לקיזוז השדה המגנטי של הכריכות ההפוכות עם הכריכות הלא הפוכות.

שאלה 9 אחת ממטרות הניסוי כפי שהוגדרה בתחילת המשימה היא : חקירת התלות בין עוצמת השדה המגנטי שנוצר במרכז לולאה מעגלית נושאת זרם,לבין עוצמת הזרם הזורם בה. את עוצמת השדה המגנטי שנוצר במרכז הלולאה לא ניתן למדוד באופן ישיר. בניסוי זה אנו מסתמכים על הקשר הישר/ההפוך שקיים בין עוצמת השדה המגנטי / כיוון השדה / המגנטי שנוצר בלולאה, לבין טנגנס זווית הסטייה של מחט המצפן / השדה המגנטי של כדור הארץ זווית הסטייה של מחט המצפן. לאחר מדידת ערכי זרם ומדידת זווית הסטייה של מחט המצפן, העלה תלמיד את הגרף הבא: שאלה 10 א. התלמיד רשם כותרת לגרף ולצירים. האם הכותרות מדויקות? מה היה אמור לכתוב בכותרות? כותרת הגרף צריכה להיות: תלות טנגנס סטיית מחט המצפן בזרם הכריכה. )מספר הכריכות קבוע(. הכותרת של המשתנה התלוי הייתה צריכה להיות: טנגנס זווית הסטייה של מחט המצפן.

ב. ציר המספרים של הזרם מכוון שמאלה. האם צורת הגשה זו תיקנית? כתבו כיצד ניתן לשנות את כיוון הציר. יש לסמן את ציר המספרים האופקי, כפתור ימני בעכבר- עריכת ציר X ולהוריד את הסימן וי בתפריט - היפוך ציר. ג. בגרף ניתן לראות כי זווית הסטייה המקסימלית של מחט המצפן שמדד התלמיד קטנה מ- 45 מעלות )טנגנס של 45 מעלות שווה ל 1(, למרות שזווית הסטייה יכולה להגיע לסטיות גדולות יותר. האם שיקול הדעת של התלמיד, שלא למדוד את כל תחום המדידה האפשרי, מוצדק? הסבירו. בכל ניסוי פיזיקלי, נרצה למדוד על פני תחום רחב ככל האפשרי מבחינה הנדסית, כדי לבדוק שהתאוריה שלנו נכונה לתחום רחב. במקרה של ניסוי זה, שגיאת המדידה בזווית הינה גודל קבוע, אך לא קיים יחס קבוע בין הזווית לטנגנס הזווית. בזווית גדולות שינוי קטן בזווית הוא שינוי גדול בטנגנס הזווית. זאת הסיבה שבגללה בחר התלמיד לעבוד בתחום קטן יחסית. עם זאת, לזווית של 60 מעלות. ניתן היה להגדיל את התחום יותר לפחות עד ד. הסבירו, מדוע בניסוי זה מחט המצפן לא תוכל להגיע לזווית סטייה של 90 מעלות? מחט המצפן לא תוכל להגיע לסטייה של 90 מעלות, מכיוון שרכיב השדה הארצי לא מתאפס בשום שלב. המחט תוכל להתקרב לסטייה של 90 מעלות אבל לא תגיע לערך הזה לעולם. ה. התלמיד צרף לגרף את משוואת קו המגמה של הניסוי, שממנה ניתן לראות כי הקו אינו עובר דרך ראשית הצירים. על פי התיאוריה, היה אמור הקו לעבור דרך ראשית הצירים. הסבירו את הפער בין המציאות לתיאוריה. מכיוון שקו המגמה ממצע בין הנקודות, ולכל נקודה יש שגיאת מדידה משלה, קו המגמה אינו חייב לעבור דרך כל אחת מנקודות המדידה. במקרה זה התלמיד היה צריך לאלץ את הקו לעבור דרך ראשית הצירים. אך גם במקרה זה, ניתן לראות שסטיית קו המגמה מראשית הצירים במסגרת שגיאת המדידה וניתן להתעלם מערך זה. ו. קוטר הכריכה המעגלית בניסוי של התלמיד היה שווה ל- 18 ס"מ. הסבירו, כיצד ניתן לחשב את גודל הרכיב האופקי של השדה המגנטי הארצי מהנתונים וחשבו ערך זה.

שיפוע קו המגמה מייצג את היחס בין טנגנס זווית הסטייה לבין הזרם בכריכה. יחס זה שווה גם ליחס בין מקדם הפרמוביליות של הריק לבין מכפלת קוטר הכריכה ברכיב השדה המגנטי הארצי. מתוך השוואת ערכים אלו ניתן לחשב את הרכיב האופקי של השדה הארצי והוא שווה ל 2.62 כפול עשר בחזקת מינוס חמש טסלה. שאלה 11 אילו היה התלמיד משתמש בלולאה מעגלית בעלת רדיוס גדול יותר,האם וכיצד היה הדבר משפיע על הגרף שהוא קיבל? אילו רדיוס הלולאה המעגלית היה גדול יותר, הוא היה גורם להקטנת השדה המגנטי שיוצרת הכריכה וכתוצאה מכך, סטיית מחט המצפן היתה קטנה. בעקבות כך, שיפוע הגרף המתקבל היה קטן יותר. שינוי רדיוס הלולאה לא משפיע על גודלו של השדה המגנטי הארצי. שאלה 12 שימו לב: בזמן הרכבת המעגל ובמהלך הניסוי, יש להקפיד על כך שהגלוונומטר עם הלולאה סביבו יימצא הרחק ככל האפשר מרכיבי המעגל האחרים ומעצמים עשויים ברזל. לולאת המכשיר עשויה אלומיניום. חשבו ונסו להסביר, מדוע? חשבו ונסו להסביר, מדוע? כידוע אלמנט נושא זרם יוצר שדה מגנטי. שדה זה יכול להשפיע על תוצאות הניסוי שלנו. גופים העשויים ברזל יכולים להשפיע על השדה המגנטי המקומי ולכן נרצה להרחיק אותם מאזור הניסוי. זאת הסיבה למה הכריכה של המכשיר בנויה מאלומיניום. שאלה 13 האם נוכל לבצע את אותו הניסוי )למדידת הרכיב האופקי של השדה המגנטי הארצי( באחד מקטבי כדוה"א? נמקו. בקוטב של כדור הארץ הרכיב האופקי של השדה הארצי קטן עד זניח, ולכן מחט המצפן תראה ישירות את כיוון השדה שנוצר מכריכות הזרם.

שאלה 14 את מערכת הניסוי ניתן באופן תיאורטי לנצל כמכשיר המודד זרם. הסבירו, כיצד ניתן להשתמש במכשיר זה כמודד זרם? מנו לפחות שלושה חסרונות לשימוש במכשיר זה כמכשיר למדידת זרם. מתוך הגרף שקיבלנו, ניתן לחשב את הזרם בכריכות לכל זווית סטייה של מחט המצפן. ניתן לכייל את זוויות המצפן לערכים של עוצמת הזרם בכריכות.חסרונות: 1. המכשיר חייב להיות מוצב מאוזן. אי דיוק באיפוס המצפן עלול לגרום לשגיאות אקראיות במדידה. 2. שדות חיצוניים נוספים בסביבת הניסוי עלולים לשבש את הקריאה. 3. כדי למדוד זרם בעזרת המכשיר יש לדעת את גודל הרכיב האופקי של השדה המגנטי של כדה"א. ערך זה אינו קבוע ומושפע מגורמים רבים )כמו מיקום המדידה( ולכן מדידת הזרם אינה אמינה לחלוטין. שאלה 15 מדוע, לדעתכם, נקרא מכשיר זה )המבוסס על מערכת הניסוי למדידת זרם( בשם " גלוונומטר טנגנטי "? מכשיר זה מנצל את היחס הישר בין טנגנס זווית הסטיה לעוצמת הזרם בכריכות כדי למדוד זרם.